
Phase transitions in multiplicative competitive processes

Hideaki Shimazaki
Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Ernst Niebur
Department of Neuroscience, Zanvyl Krieger Mind/Brain Institute, School of Medicine, Johns Hopkins University,

Baltimore, Maryland 21218, USA
�Received 4 April 2003; revised manuscript received 23 March 2005; published 20 July 2005�

We introduce a discrete multiplicative process as a generic model of competition. Players with different
abilities successively join the game and compete for finite resources. Emergence of dominant players and
evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is
understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition,
predicting novel population dynamics near criticality.
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Competition occurs when two or more players such as
organisms, individuals, or companies strive for common but
limited resources. It plays a significant role in biological and
social activities, and is the basis of evolution. Most natural
competition processes allow the introduction of new players,
which is a hallmark of an open, nonequilibrium system. In
this contribution, we introduce an irreversible discrete mul-
tiplicative process with normalization at each time step as a
generic model of competition. Players with different abilities
successively join the game and compete for finite resources.
The model shows macroscopically observable changes in its
behavior; at a singularity in the statistical distribution of the
players’ abilities, certain players become dominant over all
others. The emergence of dominant players and the evolu-
tionary development of the system occur as a transition from
stationary to nonstationary state of the multiplicative pro-
cess. We analyze the phase transition in the mathematical
framework of Bose-Einstein condensation �BEC�, although,
of course, systems modeled are classical and not quantum
mechanical. The same approach has been applied success-
fully to models of complex networks �1� and ecosystems �2�
that behave analogously to a Bose gas. We show that this
approach is applicable to bacterial competition, providing
surprising insights and predictions to their dynamics.

Before we present the model, we first introduce a general
framework for how our multiplicative competition model is
related to a statistical mechanics concept. Let ���� be a func-
tion that satisfies the following conditions for an arbitrary C2

density function g�����0� defined on �� �0,�max�:

� d�g��� = 1, �1�

� d�g������� = m + y0, �2�

� d�g���e−������ = M . �3�

All terms on the right-hand sides of these equations and � in
Eq. �3� are positive constants. Then ���� is given by

���� =
y0

1 − e−��−� , �4�

where e−�=m /M. For, dividing Eq. �2� by y0, then subtract-
ing Eq. �1�, yields

� d�g���
���� − y0

y0
= N , �5�

where N=m /y0. Multiplying Eq. �3� by N /M and subtracting
Eq. �5� from the result, the fundamental lemma of the calcu-
lus of variation then yields Eq. �4�. Hence, the so-called oc-
cupation number in Eq. �5�,

n��� =
���� − y0

y0
=

1

e��+� − 1
, �6�

becomes the Bose distribution. From Eq. �4�, such a function
���� may be obtained from the sum of a geometric progres-
sion with ratio e−��−��1. This motivates the analysis of the
following multiplicative process.

The competition we introduce is defined by three condi-
tions at each time step. �i� Players compete for a fixed total
amount of resources. �ii� The resource gained by a player is
proportional to the player’s innate ability and to its resource
gained at the previous time step. �iii� New players join the
game, each with the same initial resources. The only excep-
tion is the first player �pioneer�, who starts the game with all
the resources available. These rules are summarized in a
simple multiplicative process

yi�t + 1� = aib�t�yi�t� , �7�

where yi�t� is the gain of the ith player at time t and ai is its
ability, a positive and time-independent random variable cho-
sen from a distribution ��a�. The term b�t� is a normalization
factor, which models the limited resources. For simplicity,
we first assume that l, the number of newly introduced play-
ers at every time step, is 1. This means we consider t+1
simultaneous equations �i=0, . . . , t� at time t. The normaliza-
tion factor is then defined by b�t�=m /Mt, where Mt is given
by
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Mt = �
j=0

t

ajyj�t� . �8�

This assures that the amount of resources distributed among
t players at time t is m for t	0. The initial value of a new
player is yi�i�=y0, except for the pioneer whose initial value
is y0�0�=m+y0. Therefore, the total resources distributed
among all players are limited to m+y0 at every time step.
Due to the normalization, we let a� �amin,1�, where amin

	0, without loss of generality.
We now consider the time evolution of players except for

the pioneer. The gain of the ith player at time t is given by
yi�t�=
i�t�y0, where


i�t� = ai
t−i��

t�=i

t−1

b�t��	 . �9�

The dynamics given by 
i�t� shows distinct phases deter-
mined by the shape of the ability distribution. To see this, we
parametrize ��a� by the inverse temperature � �=1/T�
through a=e−��. The random variable �� �0,�max� is chosen
from g���, a state density function which now defines the
system. We now systematically change ��a��=g���
d� /da
�
by fixing g��� and changing �. If g��� is a monotonically
increasing function, which we will assume, high tempera-
tures mean that the distribution of the players’ abilities is
restricted to a small range—i.e., all players have relatively
similar abilities—while low temperature is synonymous with
occasional appearance of superior players relative to others.
From Eq. �9�, we have

ln 
i = �t − i��− ��i − �ln b
� , �10�

using ln �t�=i
t−1 b�t��=�t�=i

t−1 ln b�t����t− i��ln b
. By assuming
stationarity of Mt, discussed below, we let its time average be

�ln b
 = − � , �11�

where � is a time-independent constant. From Eqs. �10� and
�11�, we obtain yi�t�=e�−��i−���t−i�y0. Given e−��i−��1, the
cumulative gain �t��i�=�t�=i

t yi�t�� converges to ���i� in Eq.
�4�. Hence, the normalization of �t��i� by the initial value y0,
nt��i�= ��t��i�−y0� /y0, approaches the Bose distribution in
the thermodynamic limit �t→��. Indeed, in this limit,

lim
t→�

Mt =� d�g����
t�=0

�

e−��y�t�� , �12�

where �t�=0
� y�t��=����. As the assumption of stationarity

yields limt→� ln b�t�= �ln b
, we have limt→� m /Mt=e−�

from Eq. �11�. By substituting this into Eq. �12�, we obtain a
self-consistent equation

� d�g���
1

e��+� − 1
= N , �13�

where N=m /y0. Note that we can generalize Eq. �7� such
that we allow l ��1� new players to join the competition
with initial value y0 at each step. From a similar argument,
we obtain Eq. �13�, where N=m /y0l. Thus the deduced form,

Eq. �13�, of the competition under stationarity assumption
shows a formal analogy to those obtained for a quantum gas.
The normalization factor � plays the role of keeping the total
resources gained by all players constant at every time step, in
analogy to the chemical potential of a quantum gas which is
introduced for the conservation of particle number. Accord-
ing to this reasoning, condensation of resources to a single
player analogous to BEC is expected at low temperature
where � vanishes.

To study this prediction, we simulate the multiplicative
process, Eq. �7�, adopting a standard density function

g��� = C
�
−1, �14�

where C
=
 /�max

 �
	1�. We find two distinct phases for the

distribution of the normalized cumulative gain nt��i�
= ��t��i�−y0� /y0. At high T, nt��i� obeys the Bose distribu-
tion �Fig. 1�a��. At low T, the coordinated distribution breaks
down: players with low energy �high ability� dominate a
large fraction of the cumulative gain. This condensate exists
only below a critical point �=0. For, if � is negative, ���i�
of the player with �i�−� /� does not converge. Its normal-
ized cumulative gain cannot be incorporated into the integral
in Eq. �13�; rather, it has to be added as an extra term. The

FIG. 1. �a� Normalized cumulative gain nt��i� for m=5 and T
�Tc �left�, T�Tc �center�, and T	Tc �right�. The solid line is the
Bose distribution with � from Eq. �11�. The plus sign indicates a
pioneer. Plots of the last ten entrants were excluded. �b� Numerical
calculation of 
�
 with � from Eq. �11�, averaged over 500 trials.
Symbols �, �, and � indicate m=5, 10, and 20. Change in the sign
of � indicates the transition. Triangles on the abscissa are the tran-
sition temperatures from Eq. �17�; Tc�3.33, 6.67, and 13.3. Shown
in inset is the dependence of Tc on exponent 
 for m=20 �dots� and
the analytical solution from Eq. �17�, solid line. �c� Cumulative
occupation by the most capable player was calculated from
�t��min� /� j�t�� j� at t=200. Symbols as in �b�. Dashed line, occu-
pation by pioneer for m=20. In all simulations, y0=1, l=1, 
=3,
and �max=1.
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critical temperature for this transition can be predicted in the
usual way: Change of variables y=�� and use of �=0 in Eq.
�13� yields

N =



���max�
�
0

��max y
−1

ey − 1
dy . �15�

By approximating the upper limit of integral in Eq. �15� by
infinity, the critical temperature Tc�=1/�c� is given by

Tc
�1� � �max�N−1��
 + 1���
��−1/
, �16�

for N�1. When N�1, this approximation is not valid be-
cause of the high critical temperature; instead, from ey �1
+y and Eq. �15�, one obtains

Tc
�2� � �max�1 − 
−1�N . �17�

The transition can be seen in the occupation by the most
capable player, defined by �t��min� /� j�t�� j�. As T decreases
below Tc, its occupation dramatically increases, supporting
the prediction �Fig. 1�c��.

We verified the existence of a BEC analog in a discrete
multiplicative process, as was shown in a continuous model
�1�. However, we emphasize that, as a matter of principle,
our classical dynamical system is not equivalent to a quan-
tum gas. The most important difference is based on the fol-
lowing observation. The time evolution of each player’s gain
is different above and below the predicted Tc. Above Tc, the
gains of all players monotonically decrease. Below Tc, not all
of them show monotonic behavior, and the competitive dy-
namics is disordered. The observed nonequilibrium phase
transition from the ordered to disordered state occurs as a
violation of the stationarity in weighted mean ability,
Mt / �m+y0�. It is stationary if the gain of all players mono-
tonically decreases to zero, which allows the argument below
Eq. �10�. Otherwise, if the gain of one player rises to domi-
nate the resources, the weighted mean ability approaches the
ability of this one dominant player. Then, due to the replace-
ment of the dominant player upon the entrance of a player
with higher ability, we observe an irreversible increase of the
weighted mean ability, indicating that the system is now
evolving. Thus dominance and evolution are aspects of non-
stationary dynamics. We emphasize that the phase transition
yielding evolution does not happen in equilibrium systems.

We now consider application of the theory to the compe-
tition of clonal strains of asexual Escherichia coli serially
propagated on glucose-limited medium. The population dy-
namics is most suitably described by a stochastic branching
process with mutation and selection. Consider the ith strain
with fitness ai, mutation rate �, and population size yi�t�. Let
yi�t+1� �i=1, . . . ,Q�t�� be given by a Poisson distribution
with mean �i= m̃�1−��aiyi�t� /�i=0

Q�t�aiyi�t�. Here Q�t� is the
number of mutants that were generated and that survived the
initial step since the process started. The number of mutants
produced at time t, Q�t+1�−Q�t�, is drawn from a Poisson
distribution with mean l= m̃� j=0

Q�t��ajyj�t� /�i=0
Q�t�aiyi�t�. Note

that the average total number of cells at time t is fixed to
�i=0

Q�t��i+ l= m̃ due to the normalization factor in the above
equations.

It is clear that our process, Eq. �7�, is a deterministic
approximation of this stochastic population dynamics. A
monotonically decreasing fitness distribution ��a� should be
used because most mutations are likely to be deleterious �3�.
We thus decided to use the same ��a� used in the analysis of
the deterministic model �and the state density Eq. �14�� be-
cause it satisfies this basic tenet. Our results do not depend,
however, on the precise form of the state density; other pa-
rametrizations of the fitness distribution of ��a� such as the
Beta distribution defined on a� �0,1� yield essentially the
same results �not shown�.

Routes to adaptive evolution. A strong prediction of the
theory is the existence of a singular point on the emergence
of evolution. We observed the transition from stationary to
nonstationary state in the numerical simulation of the sto-
chastic process by decreasing the temperature T. The transi-
tion point is predictable from the critical temperature Tc ob-
tained by the deterministic theory �Eq. �17��. Above Tc,
dominance by a capable player �strain� appears. Below Tc,
the dynamics are governed by the random drift of dominant
strains. The random fluctuation of dominant strains is the
most striking difference from dynamics of the deterministic
model.

Another route to generate an evolutionary development is
to increase Tc by fixing T. The critical temperature given by
Eq. �17� is proportional to N, which is related to mutation
rate through �= l / �m+ l�= �N+1�−1. We thus obtain

Tc � �max�1 − 
−1���−1 − 1� . �18�

Given T, decreasing � increases Tc such that T�Tc is
achieved. A sufficiently low mutation rate not only prevents
deleterious offspring but is necessary for adaptive evolution

FIG. 2. A stochastic branching process with mutation and selec-
tion described in the text approaches a critical state by natural se-
lection. Average total population is m̃=100. Simulation started with
100 unique strains whose fitness is drawn from a fitness distribution
with T=1, 
=3/2, and �max=1. The ith strain produces mutants
�mutation rate �=0.01� whose fitness is drawn from a fitness dis-
tribution with Ti given by Eq. �19� ��=2�. �a� Average temperature
of the system stays near the transition point Tc=33. In early stages,
the average temperature increases, indicating initial adaptive evolu-
tion. �b� Number of existing strains at each steps �diversity� de-
creases during initial adaptive evolution. However, further domi-
nance by a few species is suppressed as the system approaches near
criticality.
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itself. The deleterious role of high mutation rate to adaptive
evolution termed “clonal interference” was observed in ex-
periments of E. coli competition �4� and theoretically inves-
tigated elsewhere �5�.

Approach to the transition point by natural selection. An
important question is whether T is comparable to Tc under
natural conditions. Evolutionary progress observed in labo-
ratory experiments of E. coli competition shows alteration of
long periods of relative stasis with short bursts of rapid
change caused by rare beneficial mutations �6�. Therefore,
empirically observed dynamics is consistent with model be-
havior at T�Tc in our construct at least during early stages
of competition. However, we argue that there exists a bio-
logically plausible scenario in which T may eventually be-
come comparable to Tc by internally tuning the parameter
�7,8�.

Instead of using a common fitness distribution for all
strains, it is physiologically plausible to assume that each
strain has its unique fitness distribution. We assume that the
fitness of mutants originating from the ith strain of fitness ai

is drawn from a fitness distribution characterized by the tem-
perature Ti=1/�i. Since most mutants are deleterious, the
average fitness produced with �i should be less than ai �i.e.,
�a
=e−�i��
�ai, where ��
=�max
 / �
+1� for the state den-
sity Eq. �14��. Henceforth, the inverse temperature �i is
given by

�i = − ���
−1ln ai, �19�

where �	1 to satisfy �a
�ai.
At the beginning of adaptive evolution, strains with

higher fitness are chosen by natural selection. Dominance by
strains with high fitness increases the average temperature of
the population. Suppose that adaptive evolution achieves a
neutral condition T	Tc. It is then by chance whether or not
a certain strain is picked up. Since a dominant strain is prone
to produce mutants inferior to the dominant strain itself,
those deleterious strains are likely to be picked up and the
average temperature decreases. There are ever-going cycles
of adaptive evolution, neutral state, then collapse of the
dominance �Fig. 2�. The advantage of the dynamics that ap-
proaches criticality is rather clear. It allows initial adaptive
evolution, permanently eliminating unfavorable genotypes,
but then significantly slowing down or preventing further
evolution and dominance: close to the critical state, strains
can coexist for a substantial period of time. Diversity intro-
duced by the dynamics near criticality is clearly advanta-
geous for the whole ecosystem, which is exposed to global
environmental changes. We thus conjecture that this strategy
might be taken by some haploid species.
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